Formulation using the dielectric constant

Böttcher and Bordewijk, page 40:

\hat{\epsilon}(\omega) &= \epsilon_\infty + (\epsilon - \epsilon_\infty)
\int_0^\infty \frac{g(\tau)}{1 + i \omega \tau} d\tau\\
&\text{with}\\
&\int_0^\infty g(\tau) d\tau = 1

For a g(\tau) = \delta(\tau - \tau_1) it follows (see eqs. 8.182 in B&B):

\hat{\epsilon}(\omega) &= \epsilon_\infty + (\epsilon - \epsilon_\infty)
\frac{g(\tau)}{1 + i \omega \tau_1}

For multiple relaxation times in a discrete case (8.187 in B&W):

\hat{\epsilon}(\omega) &= \epsilon_\infty + (\epsilon - \epsilon_\infty)
\sum_k \frac{g_k}{1 + i \omega \tau_k}\\
&\text{with}\\
&\sum_k g_k = 1

Transformation to conductivity

Tarasov and Titov substitute \epsilon for \sigma (they cite the electrostatic analogy and the formulation for dielectric materials with losses):

\hat{\sigma}(\omega) &= \sigma_\infty + (\sigma - \sigma_\infty)
\int_0^{\infty} \frac{g(\tau)}{1 + i \omega \tau} d\tau\\
&\text{with}:\\
&\int_0^{\infty} g(\tau) d\tau