lib_dd.models package¶
Submodules¶
lib_dd.models.ccd_cond module¶
Cole-Cole decomposition in conductivity formulation
-
class
lib_dd.models.ccd_cond.
decomposition_conductivity
(settings)[source]¶ Bases:
lib_dd.plot_stats._plot_stats
,lib_dd.base_class.integrated_parameters
,lib_dd.starting_parameters.starting_parameters
,NDimInv.model_template.model_template
-
Jacobian
(pars_dec)[source]¶ - Parameters
pars_dec (numpy.ndarray) – array containing (log10(sigma_infty), log10(m_i)
- Returns
J – containing derivatives.
- Return type
(2N) X K numpy.ndarray
-
compute_par_stats
(pars)[source]¶ For a given parameter set (i.e. a fit result), compute relevant statistical values such as , , , ,
This is the way to compute any secondary results based on the fit results.
Store in self.stat_pars = dict()
-
convert_parameters
(pars)[source]¶ Convert parameters given as () to the parameterization used by this class.
-
convert_pars_back
(pars)[source]¶ Convert parameters given in this parameterization back to the linear state Here: From
-
forward
(pars_dec)[source]¶ Forward response of this model
- Parameters
pars_dec (or numpy.ndarray) – [log10(sigma_infty), log10(m_i)]
- Returns
remim – with N the nr of frequencies, and the real and the negative imaginary parts on the second axis
- Return type
Nx2 numpy.ndarray
-
get_data_base_dimensions
()[source]¶ Return a dict with a description of the data base dimensions. In this case we have frequencies and re/im data
-
lib_dd.models.ccd_em_res module¶
Cole-Cole decomposition in resistivity formulation, including a high-frequency EM Cole-Cole term
-
class
lib_dd.models.ccd_em_res.
decomposition_em_resistivity
(settings)[source]¶ Bases:
lib_dd.plot_stats._plot_stats
,lib_dd.base_class.integrated_parameters
,lib_dd.starting_parameters.starting_parameters
,NDimInv.model_template.model_template
-
Jacobian
(pars_dec)[source]¶ - Parameters
pars_dec (numpy.ndarray) – array containing (log10(rho0), log10(m_i)
- Returns
J
- Return type
(2N) X K array with derivatives.
-
convert_parameters
(pars)[source]¶ Convert parameters given as () to the parameterization used by this class.
-
convert_pars_back
(pars)[source]¶ Convert parameters given in this parameterization back to the linear state
Here: From
-
forward
(pars_dec)[source]¶ Forward response of this model
- Parameters
pars_dec (list) – [log10(rho0), log10(m_i), m_m, tau_em, c_em], with m_i a vector of the chargabilities
- Returns
remim – array with N the nr of frequencies, and the real and the negative imaginary parts on the second axis
- Return type
Nx2 numpy.ndarray
-
get_data_base_dimensions
()[source]¶ Return a dict with a description of the data base dimensions. In this case we have frequencies and re/im data
-
lib_dd.models.ccd_res module¶
Cole-Cole decomposition in resistivity formulation
-
class
lib_dd.models.ccd_res.
decomposition_resistivity
(settings)[source]¶ Bases:
lib_dd.plot_stats._plot_stats
,lib_dd.base_class.integrated_parameters
,lib_dd.starting_parameters.starting_parameters
,NDimInv.model_template.model_template
-
Jacobian
(pars_dec)[source]¶ Compute the Jacobian of the CCD kernel :param pars_dec: array containing (log10(rho0), log10(m_i)) :type pars_dec:
numpy.ndarray
- Returns
J – (2N) X K array with derivatives.
- Return type
numpy.ndarray
-
convert_parameters
(pars)[source]¶ Convert parameters given as () to the parameterisation used by this class.
-
convert_pars_back
(pars)[source]¶ Convert parameters given in this parameterisation back to the linear state Here: From
-
forward
(pars_dec)[source]¶ Forward response of this model
- Parameters
pars_dec (list) – [log10(rho0), log10(m_i)], with m_i a vector of the chargabilities
- Returns
remim – array with N the nr of frequencies, and the real and the negative imaginary parts on the second axis
- Return type
Nx2 numpy.ndarray
-
get_data_base_dimensions
()[source]¶ Return a dict with a description of the data base dimensions. In this case we have frequencies and re/im data
-